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An adaptive moving mesh method is developed for the numerical solution of
an enthalpy formulation of heat conduction problems with a phase change. The
algorithmis based on a very simple mesh modification strategy that allows the smooth
evolution of mesh nodes to track interfaces. At each time step the nonlinear enthalpy
equation is solved using a novel semi-implicit moving mesh discretisation which is
shown to possess a unique solution. Numerical examples are given for a two-phase
freezing problem, a model of a spot-welding process, and a three-phase problem
with a varying number of interfaces. These test cases demonstrate the accuracy and
effectiveness of the overall strategye 2000 Academic Press

1. INTRODUCTION

A large number of important physical processes involve heat conduction and mat
als undergoing a change of phase. Examples include semiconductor design, geophy
cryosurgery, and industrial applications involving metals, oil, and plastics [22]. These pr
lems are often collectively called Stefan or moving boundary value problems. Unfortunat:
analytical solutions are only available for a limited number of model examples and hel
the solution of most practical cases requires the use of numerical techniques.

What makes these problems difficult to solve is the presence of the moving boundar
which the material is changing phase. A number of numerical methods have been prop:
which essentially fall into two categories: front-tracking methods and enthalpy methc
(see [8, 15]).

Front-tracking techniques is the term usually applied to methods that explicitly require
Stefan, or equivalent jump, condition to be satisfied on the moving boundary while solvi
the heat conduction equations in either phase. The location of the boundary is there
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FIG. 1. Smooth and discontinuous temperature-enthalpy functions for a three-phase prbklem; 0,
C1 = Cz =1, Tm1 = -04, Tm2 =0, andé‘l =& = 1E-2.

central to the accuracy and applicability of this approach. However, in multidimension:s
is not uncommon for the phase boundary to develop cusps and to double back on itself
generally become difficult to track.

In an attempt to avoid the need to know the location of the phase boundary, the f
conduction equations can be reformulated in terms of the enthalpy which is the surnr
sensible and latent heats. Using this formulation the energy balance at the phase bour
is satisfied automatically and if the location of the boundary is required then it can
determined a posteriori. Enthalpy methods therefore appear to avoid some of the difficul
of front-tracking methods.

However, if the material in question changes phase at a specified temperature ther
temperature—enthalpy relationship has a jump discontinuity at the melting temperature
Fig. 1). For these materials a naive discretisation of the enthalpy equation on a unifc
grid is well known to predict non-physical features such as a step-like movement of f
phase boundary and spurious temperature plateaux [8]. Various ways of eliminating tt
undesirable features have been proposed including specialised post-processing techn
[24] and the judicious choice of time steps. These methods work reasonably well for o
dimensional problems but their application to multidimensional examples seems less cl

A second approach is to smooth the temperature—enthalpy relationship so that it i
least continuous (see, for example, [19] and Section 2). A smoothed temperature—enth
relationship can also be used to model materials that change phase over a temperature
rather than at a specified temperature [12]. If one uses a stationary grid then smootl
the enthalpy function has to be done carefully as it has been observed that if the am
of smoothing is too large then the numerical results can become inaccurate [23]. Redus
the level of smoothing improves the accuracy but eventually the step-like behaviour of
movement of the phase boundary reappears.



SOLUTION OF STEFAN PROBLEMS USING A MESH 539

The simplest way of avoiding non-physical behaviour using the enthalpy formulation
to reduce the spatial step size. However, if this is done uniformly over the whole dom
then the overall method would be computationally expensive. The mesh spacing need
be refined around the position of the moving phase change boundary which suggests ¢
form of adaptive mesh algorithm would be useful. Within a finite element context this
usually achieved using the-method of adaptation, where the mesh is locally refined c
coarsened by adding or deleting points [20, 21]. A less popular approach is to use the
calledr -refinement method where mesh points are moved throughout the domain while
connectivity of the mesh is kept fixed. The main reason for the lack of popularity of tt
approach is the difficulty involved in controlling the geometry of the mesh elements. If tt
is not done with care then mesh tangling and elements with negative areas can easily ¢
However, the development of a robusadaptive method is attractive in that it intuitively
should be able to accurately resolve and follow important solution features. The cod
involved in a moving mesh method is also simpler tharhamethod, which requires a
considerably more complicated data structure.

There has been much recent interest in the development of moving mesh method:
the solution of problems with steep solution fronts such as travelling wave solutions
reaction-diffusion systems and boundary and shear layers in fluid dynamics calculati
[1, 3, 16]. Atthe heart of these methods is the grid movement strategy which is usually ba
on the idea of mesh equidistribution where a positive monitor function is evenly distribut
between the available mesh nodes.

The first aim of this paper is to show how a very simple moving mesh method can
used to solve a smoothed enthalpy formulation of the heat conduction equations. The r
movement algorithm is based on the equidistribution of an analytically integrable moni
function which avoids the need to discretise the equidistribution principle and automatics
leads to grids that evolve smoothly in time. The approach is similar to that used by Far
and Drury [14] to solve nonlinear hyperbolic problems.

As the moving grid method aims to cluster mesh points around the phase change inter!
it is clear that we require some form of an implicit discretisation. Even on a statione
grid one has to be careful that unique solutions exist of the resulting nonlinear algeb
systems. Using a moving grid introduces convection-like terms from the semi-Lagrang
formulation of the original problem. A second aim of this paper is to consider a novel ser
implicit discretisation of these equations and to prove that the resulting nonlinear algeb
systems arising at each time step have unique solutions.

The layout of the rest of this paper is as follows. In the next section we present a smooit
enthalpy formulation of the heat conduction equations. In Section 3 we describe the se
implicit discretisation of the enthalpy equation on a moving mesh. In Section 4 we descr
the mesh movement strategy. Finally, in Section 5 we apply the moving mesh methot
the solution of a two-phase freezing problem, to a model of a spot-welding process, an
a three-phase problem with a varying number of interfaces.

2. THE GOVERNING EQUATIONS

The governing equations for multiphase one-dimensional heat conduction are

i _ 0 (9T (T
Ci(Ti)Bt_BX<kI(-n)8X)+(pI(TI)’ 1)
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where the index =1, ..., NP corresponds to thHP separate phases. HeZg(T;) = oG,
andp, ¢, ki (T;), andT; (x, t) denote the volumetric heat capacities, the density (assum¢
the same in each phase), the specific heats, the thermal conductivities, and the tempera
respectively. Herep; represents possible body heating or cooling terms. If a phase char
occurs between phaseand phasé + 1 at a specific temperatuile= T, , and we denote
the position of the phase change boundaryhbys (t), then an energy balance gives rise
to the conditions

Tilsty = Titalsy = Tm, 2
aT, 3T, dsi (t)
ki +1 i+l — K 87' = )\i T» (3)
0 X s

wherej; is the latent heat per unit volume involved in the phase change.
To reformulate this problem we introduce an enthalpy function which represents the s
of sensible and latent heats and is given by

i C) de, T < T,
H(T) = { H(Tq) +4 + [7, C&)de, Tm <T <Tmo.i=1....NP—2,
H(Top,) +Avpa+ [ CEAE, Ty, <T,

(4)

where H (T, ) = lims_o- H(Ty, +68) and Tyt is any reference temperature beldw,.
Equations (1) and conditions (2) and (3) can then be written as the one equation

GH o /. 0T KD =k
" M(kax) +o.  whereg(M) =¢i(T) tTn, <T <Tm.  (5)
cm =C(M

If the thermal conductivities are temperature dependent then (5) can be linearised by
plying the Kirchoff transformation

u™ = [ k(&) dg. (6)

In terms of this new variable Eq. (5) is simplified to

2
A ) ©
This equation can then be solved foand transformed using (6) to find the temperature.
If Cj is constantin each phase then we see from (4H&Y) is a linear function with jump
discontinuities at the phase change temperatures (see Fig. 1). For the reasons outlined
Introduction, various attempts have been made to smooth out these discontinukties ir
Based on a continuously differentiable relationship suggested by Egolf and Manz [12]
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two-phase problems, we consider the function

Her+ Ca(T = T) + Foxp(-020) . T <o,
H(Tm,) + 2% +Ci(T = Tn )

i |T_Tmi, | Ai ‘TiT’“l‘
] () e ) T sTen,
i=2 ... NP—1
H (Tiges) + 222 4 Crp(T — T )
g IT—Tingp_y|

wheres;” ande;" determine the rates at which the temperature-enthalpy function asymptc
to the linear relationship away from the phase change temperggu¢see Fig. 1). We will
assume that” < (Tm, — Tm,_,) @ande;” < (Tm, ., — Tm), and hence foH (T) to essentially
be continuously differentiable &t, we require that

Ci—Ci+1=2<1+—1_>. ©)

i &
If &i =& + & then we can define a modified Stefan number for phase chaase

_ (Cit1—Cs

St »

(10)

The simultaneous satisfaction of (9) and (10) gives rise to quadratic equaticss &md
&;” which have physically relevant solutions given by

7 = par (L4 ST = v/1+ SP) (11)
St
and
grzz‘;—‘¢<s¢—1+,/1+ SP). (12)

In the limit thatC; . ; — C; we haves;” — & = ¢; /2. Figure 1 shows the smoothed enthalpy
function of a three-phase problem considered in Section 5.

The original motivation for this model was to describe mixtures and glassy substan
that have a continuous enthalpy transition as a function of temperature from a pure s
phase to a pure liquid phase.

3. AN SEMI-IMPLICIT MOVING MESH DISCRETISATION

We now consider the numerical solution of (7) for, t) € @ = (X, Xgr) x (0, T). We
assume that the domain is partitioned into strips such that

Q= |J xuoxe) x [t
0<n<N;-1
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Each strip is made up of two spatial grids
Xa = {XL =X <X{ < <XN_1 < XN =Xr}

and

n+1 n+1 n+1 n+1 n+1
={x = < X{ C<XNTL < XN = xR}

In the next section we describe how the grid is generated at timetléveFor the moment
we will assume that it is given.

In order to incorporate the movement of the grid we require a discretisation of the sel
Lagrangian formulation of (7) which takes the form

daH dxdH 32
on =X 1
ot dtox ~axe TPW (13)

To describe the discretisation we first introduce some notationh.etx]! — x{'_;, ﬁ’j‘ =
(h],1+h)/2, andAt" =t" —t"~*. We will also denote

uy = (ug, uf, ...,u’,l,)T, (14)
whereu represents the approximationwixf, t"). Similarly, let
HY = (HS, HY, .. HY) = (H(W)), H(u), ..., H(u)' (15)
and

oh = (98¢0 o) = (0 () o (ud). ... o))" (16)

We consider the following discretisation of (13)

n+1 n n+1 n n n
H™ —H' X —Xj<H1+1 HL 1)

Athrl Atn+1 hn 1 + h]+1
n+1 n+1 n+1 n+1
__ 2 o L Sl I Mt = ) 1Y 17)
R AN A

If Dirichlet conditions are given ak=x,_ and x=xgr then (17) is applied forj =
1,2..., N —1.If aphysically relevant derivative boundary condition of the form

ou

oy —ebuta®),  e® = 0, (18)

is specified ax = x,_ then this is discretised ait= t"** by introducing the fictitious unknown

un+1 outside the domain at=x, — h”Jrl and a central difference is used to write
ur11+1 url+11

=
2hr11+1

n+1u8+l + gr‘l+l. (19)
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We then apply the difference scheme (17) at0 so tha’u’ﬁi1 can be eliminated. A similar
procedure can be carried out if a derivative condition of the form

g—i = a(bu + g(t), a(t) <0, (20)
is specified ak = Xg.

Note that the terms on the righthand side of (17) are treated implicitly, whereas the te
introduced from the mesh movement it treated explicitly. Since the grid will be cluster
around the moving front we require an implicit discretisation of the heat conduction a
source terms to allow the use of reasonably large time steps. We will see below that
explicit treatment of thet Hy term allows us to establish the existence and uniqueness o
solution of Egs. (17).

3.1. lterative solution of the nonlinear system of equatiore calculation oy
requires the solution of the nonlinear algebraic equations (17) which after multiplyil
through byAt"™? can be written in the form

Fuit™) = At + HY — Attt 41" =0, (21)

wherer" is a vector that is independent of,™*. The tridiagonal matrixA has positive
diagonal elements and negative off-diagonal elements and can easily be shown to &
irreducibly diagonally dominant M-matrix. An immediate question is whether a uniqL
solution of (21) exists. & (u) = 0 we can write (21) in the form

F(ui™) = Aul™ + ¢ (ur™) =0, (22)

whereg is continuous, diagonal, and monotone in each component. Existence and unic
ness is given in the following theorem [13].

THEOREM3.1. If

-1 N-1
G(vj) = ajjvj + ¢ (vj) + Zaji ui[n+1,s+l] + Z ajj ui[n+l,s] =0 (23)
i=1 i=j+1

then the nonlinear SOR sequer{c ™} given by

[n+1,s+1] _ | [n+19] . [n+1,9]

{19 4 () — WP Lt - g

and

ul™ el = otherwise

converges globally to the unique solution(ag) for all w € (0, 2).
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Note that an implicit discretisation of theH, term would lead to a system similar to
(22) but the mapping would not be diagonal and we could not use the above theorem.

In practice, we use Newton’s method to solve (21). Since the smoothed enthalpy func
(8) is continuously differentiable we have no difficulty in defining the Newton iteratior
If Newton’s method fails to converge then we apply the nonlinear SOR iteration whi
requires the solution of Egs. (23). The next question is whether unique solutions e
to these scalar nonlinear equations. This is clearly the case gjnisea monotonically
increasing function and;; > 0 and henc& — fo00 asv; — Fo0o and so a solution exists.
These scalar problems are solved using Newton’s method which again is well defined
to the smoothness properties ldf If Newton’s method fails to converge then we use a
bisection procedure to provide an adequate initial guess.

4. MOVING THE MESH

4.1. Grid equidistribution. The discretisation described in the previous section can &
used when grids, andx* are available. Assuming th&} has already been determined
it remains to describe how to calculzxﬂ?l. At each time step a new grid is generated base:

on the idea of mesh equidistribution. A computational grid is said to be equidistributing

/ Xi
:

i-1 i

Xj 41 1 XR
M(x)dx:/ M(x)dx:—/ M (x) dx, i=1,...,N, (24)
X N XL
where M (x) > 0 is a monitor function which should be related to the local difficulty in
solving the problem. The theoretical basis of mesh equidistribution has been establis
for a number of approximation problems such as optimal knot placements for spline co
cation approximations of two-point boundary value problems [9] and the characterisat
of optimal grids for piecewise polynomial interpolation [6].

In practice the monitor function is based on the numerical solution and the equidistribut
conditions are discretised. For example, use of the mid-point rule to discretise (24) gi
rise to the set of equations

Mj+%(Xj+1—Xj)=Mji%(X]‘—Xj_l), j=12,...,N—-1, (25)

whereMj, 1> is an approximation oM (X;j,1/2). The coupled set of Egs. (21) and (25) then
have to be solved simultaneously far;, X;}}".

The quality of the adaptive grid depends crucially on the monitor function. A popul:
choice for problems with moving steep fronts is

IH\?
M(x) = l+a<a—) , a >0, (26)
which represents a scaled solution arc-length. Through numerical experimentation, Dur
[11] concludes that the grids obtained by equidistributing this monitor function are n
sufficiently clustered at the phase change boundary and that it is unsuitable for multi-pr
problems with different latent heat jumps. Instead, Duncan proposes the monitor funct

oF(H)
X

Mu)=1+n‘ , (27)
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where the parameter > 0 controls the number of mesh points in the phase transitio
regions. The functior (H) is chosen to give a uniform grid in pure phase regions and t
give equal weighting to each phase transition region, regardless of the latent heat jum|

The meshes obtained by equidistributing (26) or (27) will have very large ratios betwe
adjacent grid cells. These can lead to a deterioration in solution accuracy and to \
stiff systems of ordinary differential equations if a method of lines approach is used.
common strategy to alleviate this problem is to smooth the discrete values of the morn
function before attempting to equidistribute them [10]. This additional step can becol
computationally expensive if a smooth grid is required. Furthermore, it is far from cle
what the correct balance should be between the competing effects of adaptivity provi
by the monitor function, and the smoothing process.

4.2. An integrable monitor function.Discretisation of the equidistribution principle can
be avoided if the monitor function is analytically integrable. If the monitor function is chose
carefully then the resulting grid will also be automatically smooth. There are many possi
integrable monitor functions that will give rise to a smoothly clustered grid. For probler
involving the propagation of a single phase change boundary we consider equidistribu
the function

M1

VIB(X —x)2 + 1

which was originally proposed by Farrell and Drury [14] to solve problems with stee
solution fronts. The parameters andu., are positive constants that affect the smoothnes
and clustering of the grid around the poigtwhich is an estimate of the position of the
phase change boundary. The positions of the mesh points that exactly equidistribute
are the solutions of the scalar nonlinear equations

MX) =1+

(28)

Xj + s sinh ™ (ua(Xj — X)) — s (1 - J) sinhrt (ua(xL — X.))
n2 n2 N

- ﬁ ((XR —XL) + &(Sinh_l(MZ(XR - X*)))) =0, (29)
K2

forj=1,2,..., N —1.Thesecan be easily solved using Newton’s method and the resulti
grid is clearly non-overlapping. Figures 3 and 4 demonstrate the influence of the choic

FIG. 2. Mirror grids.
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FIG. 3. Effect of varyingu; with u, being fixed withN = 40.

parameterg; andu, on a grid that tracks a moving front whetg(t) = 2,/t /5. We can see
clearly that the effect of increasing while keepingu, fixed is to reduce the mesh spacing
aroundx, and to widen the mesh spacing away framWe also note that the main effect
of increasingus is to reduce the extent over which the mesh clustering occurs around t
front position. In all of these graphs we observe a very smooth evolution of the grid nod

It is often useful to have some estimate of the minimum mesh spacing using the mon
function (28). A lower bound is obtained by settirg- x, and using the equidistribution
principle (24) we get

Nmin ~ 1 (Xr — XL) + e sinh (u2(Xg — X)) |- (30)
uaN M2

To ensure that Newton’s method for the solution of (21) converges and to avoid oscillatic
it is important thatu; and u, are chosen so that at least two mesh points are contain
within the steep enthalpy layer at the phase front. The interfacial thickness is related 1
andx in a non-trivial way so itis difficult to say exactly how, andu, should be chosen for
a particular value of. In the numerical results section we have chasén= 103 which
results in a small perturbation of the original problem. By experimentation we have th
chosenu; andu; large enough to ensure that we can resolve the enthalpy layer.

Often a phase will appear or disappear during the lifetime of a simulation. Figure
shows the behaviour of the mesh trajectories as a phase front exits the domain. Note
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=10, p2 =10 1,250, 1,=50

FIG. 4. Effect of varying bothu, andu, simultaneously wittN = 40.

rapid redistribution of the mesh points within the interior of the domain when the fro
leaves the domain. This behaviour can potentially lead to inaccuracies close to the bol
ary. To avoid this problem, when a front exits the domain the redistribution of the gt
nodes is done smoothly by exponentially decreasing the value tf zero while keeping
the value ofu; fixed. As we have seen in Fig. 3, this allows a smooth transition fror
a significant amount of mesh clustering to a uniform grid. Figure 5b shows the effect
settingut = u1e7°®° o > 0, wheret* is the time when the front reaches the boundary
We can see clearly that the mesh points are reallocated in a very smooth manner. Figu
shows that this process can also be run in reverse to smoothly introduce a phase fron
the domain.

When a front appears from a boundary tffém/l dxrapidly increase in time. This causes
distant grid points to move non-smoothly since the local value of the monitor function aw
from the front position is almost constant. This effect can be seen clearly in Fig. 5awhere (
points at the right of the domain move sharply to the left to increase the local mesh spacin
the front enters the domaintat 0. To solve this problem Farrell and Drury [14] suggest the
use of so-called mirror grids. To be precise, if a front is estimated tokethén the grid is
generated by equidistributing the monitor functMrix) = M1 (x) + M2(X) + M3(x) where

i Mo(x) = 1+ 1

VHEX+ X — 2x)2 + 1 n3X —x)2+ 1

Ml(X) =1+
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a 1,=1000, 11,=1000 b 1,=1000, 1,=1000

T B

1,=1000, 1,=1000

FIG.5. Grids obtained using the analytically integrable monitor function With- 40.

and

M1

M3(X) =1+ .
VIS(X + X, — 2XR)2 + 1

Itis clear from Fig. 2 that these are just mirror images of the original monitor function r
flected over the respective boundaries. Therefore, whatever amount of monitor functio
lost from the domain, an equal amount is reflected back in. This composite monitor funct
can again be analytically integrated and the grid points found by Newton’s method. The ¢
shown in Fig. 5b was obtained using this approach and we can see that the aforementi
problem close to the initial time has now been completely avoided. Finally, Fig. 5d sho
that the mirror grid procedure can be used to adapt to the position of fronts reflecting
the boundary and also to fronts that interact. In the numerical examples that follow in
next section we will use the mirror grid modification to the basic equidistribution procedu

outlined above.
For multiphase problems the monitor function is

NP—1

M(x) = Z MD(x), (31)

whereM© is the monitor function associated with the phase front connecting please
i+ 1.
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4.3. The complete algorithmEach time step of the adaptive algorithm requires the
solution of (29) and (21). One could solve these simultaneously as one large nonlir
algebraic system. The alternative is to decouple the calculation of the grid points from
solution. There are two advantages of decoupling. First the size of the algebraic syst
that arise at each time step are smaller. This is of great importance for the extensio
multidimensional problems. The second advantage is that decoupling allows flexibility
the choice of interative methods used to calculate the grid and the solution of the moy
mesh equations. In particular, by decoupling it is possible to use iterative methods v
different tolerances when determining the grid and the solution. The numerical result:
Section 5 were obtained using the following algorithm:

(1) Perform the simple prediction

n+1 n Athrl X: B X: ! 32
X0 = X T AtD ’ (32)
Sets=0.

(2) Letx, =x{\'g and solve (29) to givey

(3) Solve (21) forun+1 and then determm)e* = x("*+sl+1) using linear interpolation for
the phase change temperature.

(@) If [x}'eq) — X4'S| < Tolgig thenuktt = uktd, xhH =x}'3, andx™ =X s41).
Otherwises=s+ 1 and goto (2).

n+1

There is rarely any need to use a very strict tolerance for the convergence of the |
points and in all the calculations presented in the following section w&adgt = 102,

The simple initial extrapolation step is extremely useful to speed up convergence. By c
extrapolating the estimate &f we of course ensure that we have a non-overlapping gric
Clearly the efficiency of this approach depends on how quickly convergence is react
The calculations fou&*sﬂl andngslﬂ can be accelerated if the initial guesses for thes

calculations are's andx}'.

5. NUMERICAL EXPERIMENTS

5.1. Example 1. The first test case we consider is a classical Stefan problem describ
the freezing of water. This example has also been considered by Boeaeing] and has
been used by Furzeland [15] to compare the performance of different numerical technic
for solving moving boundary value problems. Equation (1) is solved subject to bound:
and initial conditions

aT.
T1(0,t) = —20, 8_)(2 =0 asx — oo,t >0,

and
Ti(X, 0) = To(x, 0) = 10, forx > 0.
The thermal properties are

ki =222 k, =0.556 C; =1.762 C,=4.226 A =338 Ty, =0.
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The similarity solution for this problem is given in Carslaw and Jaegar [7] and takes t
form

s(t) = 2¢Vkat,

Tix, 1) = —20(1— M) |
erf¢

B erfe(x/2y/k2l)
Ta(x, t) = 10<1_ erfc(qb\/m)) ’

wherekx; =k; /Ci and¢ is the root of the equation
eﬂ’l)2 ko K1 e,,(1¢2/,(2 ¢)\ﬁ _0
erfp  ki\ kp2erfap/k1/kz)  20C;

To avoid any difficulties with the discontinuity in the initial and boundary conditions
and to compare the results with those of Furzeland [15], the problem was solved
0.0012<t < 0.288. Figure 6a shows the computed mesh trajectories Afith: 0.0012,
N =40, e; = ¢] +&7 =0.25 and the mesh has been generated wjth: 1., = 200. We can
see that the mesh has followed smoothly the movement of the phase boundary and

1 0.25
02

01

/s . .
0 o1 02 03 04 05 06 07 08 09 1 o
X

01 0.2 0.3 0.4 0.5 06 0.7 “0 0.05 0.1 0.15 0.2 0.25
x x

FIG. 6. Results for Example 1 wittN = 40 ands = 0.25; (a) mesh trajectories; (b) front position — exact,
- .- adaptive — — uniform; (c) enthalpy; (d) temperaturexat 0.2; — exact, - - adaptive — — uniform.
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TABLE |
Results for Example 1 withN =40 ande; =0.5

w Newt  SOR  [IEfllLe@ IEtlL @ IEulLy @

50 2486 351 1.726E3 8.879E-2 3.951E-1
100 1044 10 1.328E3 5.352E-2 3.776E-1
200 849 0 1.408E3 5.075E-2 3.883E-1
400 759 0 1.736E3 5.257E-2 4.078E-1

Fig. 6b we see that the clustering of mesh points has led to a very accurate prediction o
position of the front. Included in this figure are the results obtained using a stationary unifc
mesh. Equation (7) has been discretised using a central difference approximation anc
resulting nonlinear equations solved for the enthalpy using a Newton iteration. This allow
liquid fractionH /A to be calculated for the mesh cell undergoing the phase transition whi
can be used to improve the accuracy of the predicted front position. However, even with
modification we can see that the uniform mesh results are poorer than the moving mesh
diction. Figure 6¢ shows the computed enthalpy-2t0.0024, 0.0036, 0.018, 0.072, 0.144,
and 0.288. These again are very accurate. Finally, Fig. 6d shows the temperature histo
the pointx = 0.2. We can see the unphysical staircase behaviour using a fixed uniform m
and that the moving mesh results are in very good agreement with the analytical soluti
Table | compares the performance of the moving mesh methad ag., = u is varied
with ¢; = 0.5 fixed, whereE ¢, E1, andEy denote the error in the front position, temper-
ature, and enthalpy, respectively. The CPU times have all been normalisedstoth@
case and all calculations were performed using double precision arithmetic with the S
parametetr = 1.4. We see that as long asis sufficiently large then the algorithm is very
efficient requiring only two or three Newton steps per time step. For smaller valyes of
the grid does not resolve the steep frontHnand this leads to the increased number of
Newton and SOR steps. Table Il shows the sensitivity of the numerical results to the ch
of &5 with u = 200 fixed. Wherz, is large we see that the resulting nonlinear systems a
relatively easy to solve but this is at the cost of reduced accuracy. As we decresse
find that the problem becomes slightly more difficult to integrate forward but that we ge
considerable improvement in accuracy. Eventually, ifs taken too small then we see an
increase in the overall cost of the algorithm with little improvement in accuracy. The e
row of this table shows the results using a fixed mesh. The moving mesh results are cle
much better especially for the temperature. In fact to reduce the error in the tempera
to that using the moving mesh requires an order of magnitude more mesh points. The

TABLE Il
Results for Example 1 withN = 40 andp = 200

&1 Newt SOR |[E¢llLe@ IErllL@ lEullL, @ CPU
2 742 0 49083 1.516E-1 1.058E+0 1.0
1 754 0 2.285E3 7.948E-2 6.148E-1 1.1
0.5 849 0 1.408E3 5.075E-2 3.883E-1 1.2

0.25 1068 10 1.558E3 4.286E-2 2.868E-1 1.4
Uniform 497 0 6.207E3 5.222E-1 8.756E-1 0.63
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TABLE 11l
Comparison of Adaptive Grid Results with Those Considered
by Furzeland [15]; u = 200,e; = 0.25

Methodt 2.4E-3 3.6E-3 1.8E-2 7.2E-2 1.44E-1 2.88E-1

() 2.240E-2 2.760E-2 6.180E-2 1.238E-1 1.750E-1 2.476E-1
(i) 1.960E-2 2.560E-2 6.170E-2 1.236E-2 1.749E-1 2.474E-1
(iii) 2.280E-2 2.790E-2 6.190E-2 1.237E-1 1.750E-1 2.474E-1
(iv) 2.500E-2 2.500E-2 5.000E-2 1.250E-1 1.750E-1 2.490E-1
Adaptive  2.155E2 2.670E-2 6.053E-2 1.234E-1 1.748E-1 2.478E-1
s(t) 2.260E-2 2.790E-2 6.190E-2 1.238E-1 1.750E-1 2.475E-1

tables do show that very accurate solutions can be obtained using the moving mesh me
without the need for the grid being overly refined and for moderate valugs of

Finally, Table Il compares the predicted front position with the four methods consider
by Furzeland [15]. Methods (i), (ii), and (iii) are based on front-tracking techniques where
method (iv) is based on a discretisation of an unsmoothed enthalpy formulation usin
stationary uniform grid. It should be noted that the results for method (i) ard fer 80
and the results for method (iii) are obtained by a method of lines approach using adap
time stepping. We see clearly that the moving mesh results are a significant improven
over method (iv) and are very competitive with the three front-tracking methods.

5.2. Example 2. The second test case considered involves the simulation of the sp
welding of two large sheets of steel using a high electric current as a body heating sou
The model used was proposed by Atthey [2] and this example has also been used as
case in the numerical work of Li [18]. In non-dimensionalised form the governing equatit
is given by (7) with

Ao + UEy, u=<0.6
u) = 33
() {A+uE, u= 06, (33)
and
Bu, u<l1
Hu=<{B<H<B+C, u=1 (34)
Bu+C u>1,

whereA=1.708, Ag = 0.336,E = 1.220,Ey = 3.457,B = 0.780, andC = 0.331. The
boundary and initial conditions take the form

ad 0 onx =20
w1 (@)
X —1.94% onx =1,

andu(x,0)=0,0<x < 1.

Before the melting temperature is reachec at 0 this is just a simple heat conduc-
tion problem. Once the melting temperature is reached it remains fixed for &,ti@/
(A+ E) = 0.11305 while enough heat is added for the material to change phase. Dur
this time other parts of the material reach the melting temperature due to the body hea
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FIG. 7. Results for Example 2 wittlN = 40. (a) Mesh trajectories, (b) enthalpy;coarse grid, — fine grid.

term thus leading to a finite mushy region. The interfaces between the solid-mush reg
and the liquid-mush regions will be referred to as the solidus and liquidus interfaces,
spectively. After the liquidus interface appearsat 0 it rapidly moves across the domain

and eventually merges with the solidus interface.

Numerically, we define the position of the solidus and liquidus interfaces(@&s =
X(H(B)) andx (t) = x(H(B + C)), whereH is the smoothed enthalpy function. Using
the smoothed enthalpy function the temperatupse-at0 increases continuously during the
change of phase rather than remaining fixed. To calculate the times when the solidus
liquidus interfaces appear at= 0 we use linear extrapolation in time from the solid and
liquid phases, respectively.

Figure 7 shows the computed solutions and mesh trajectoriedNwitt0, At =0.001,
ande; = 0.001. Before the temperature at the lefthand boundary reaches the melting t
perature we can see that a stationary uniform grid is being used. To ensure that the cot
tational grid is in the correct position to track the solidus interface, the method first dete
the presence of the interfacexat= 0 and then retakes a number of time steps such th
w1 is increased exponentially to its final value. When a sufficient amount of heat has b
added the liquidus interface appearxat 0 and moves very rapidly across the domain.
At this stage some of the grid points migrate smoothly from the solidus interface to resc
the liquidus interface. Thereafter, we can see that the adaptive algorithm follows accure
both interfaces which converge towards each other. The predicted interface positions
shown in Fig. 8 which move very smoothly.

No exact solution exists for this test case so Fig. 7b compares the computed enthalpy
the solutions obtained using a fine grid with= 320. We see excellent agreement and not:
that the enthalpy at the solidus interface is continuous whereas it is almost discontinuot
the liquidus interface. An analytical argument to explain this behaviour is given in [17].

Tables IV and V show the convergence of a number of parameters describing the si
lation. Hereto andt; are the times of the appearance of the solidus and liquidus interfac
respectively. The positions of the solidus interfaceatt; andt = 1 are denoted b$(t;)
andS(1). The prediction ofS(1) appears to be converging to aroune: 0.76 which is in
reasonable agreement with the experimental value6G&0x < 0.7 and is closer then the
predictions of Attheyx ~ 0.85) and Li(x ~ 0.784).
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FIG. 8. Phase front propagation for Example 2.

5.3. Example 3. The final case we consider involves the appearance and disappeara
of four phase fronts. This example was originally proposed by Duncan [11]. The governi
equation is given by (7) witih = 0 and the temperature-enthalpy function is

u foru<-0.4
Hu) =<u+02 for—-04<u<0 (36)
u+0.4 for0 < u.

The initial and boundary conditions are

H(x,0) = -1 forx € [0, 1],

4 —1 fort € [0, 0.5]
H@O,t) =
1 fort € [0.5, 00),
-1 fort € [0, 0.075]
H@,t)=<4t—-13 fort € [0.075 0.575],
1 fort € [0.575 o00).
TABLE IV

Results for Example 2 withN = 40, u = 200, andAt = 1IE—3

&1 to 1] tt—1t S(ty) S(1)

5.0E-3 0.67072 0.78594 0.11521 0.52347 0.75651
2.0E-3 0.67121 0.78553 0.11439 0.50807 0.75998
1.0E-3 0.67119 0.78488 0.11369 0.49832 0.76101
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TABLE V
Results for Example 2 withe; = 2E—3, u = 200

N At to t th—to S(ty) S(1)

40 4.0E-3 0.66487 0.77388 0.10901 0.49949 0.79713
80 2.0E-3 0.66863 0.78340 0.11477 0.50642 0.76939
160 1.0E-3 0.67124 0.78565 0.11441 0.50741 0.76019

The solution of this problem has two phase-change boundaries moving to the right and
moving to the left. The fronts moving to the right appeatr at 0.2 and 0.35 and the fronts
moving to the left at = 0.275 and 0.425. The fronts moving to the right and left annihilate
each other and hence we have the added difficulty of the disappearance of fronts durin
lifetime of the simulation.

Figure 9 shows the computed mesh trajectories and enthalpy at the tim@d45, 0.25,
0.3, 0.35, 0.4, 0.45, 0.5, 0.53, 0.56, and 0.6 using the paramster40, ¢ = ¢, =0.001,
At =0.001, andTolyiq = 0.001. As no exact solution is available we have compared th
solution with a fine grid solution witt = 320. We can see that the grid evolves smoothly
to track the appearance and disappearance of all the interfaces. Finally, Fig. 10 show:
predicted front positions.

6. EXTENSIONS

A major benefit of an adaptive moving mesh approach will be for problems in more th
one dimension. To generate an adaptive moving mesh it is useful to regard the phy:s
domainQ, as the image of a computational (logical) dom@nunder the invertible maps

x=x(E&, 1), y=yE, nt) and  £=E&Xy,1), n=nXY,1), (37)

where(x, y) and(&, n) are the physical and computational coordinates, respectively. A me
covering2;, is obtained by applying the mapping given in (37) to a partitioning2ef

a o7 Lt H b '

05

0.4f 0.2
T o 1
0.3}
-0.2 1
0.2 -0.4

0.1

time

o -
0 01 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X X

FIG. 9. Results for Example 3 witthN = 40. (a) Mesh trajectories, (b) enthalpy;coarse grid, — fine grid.
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FIG. 10. Phase front propagation for Example 3 with= 40.

A popular way to choose the coordinate transformation is to require that it minimize:
functional of the form

| (&, n) = % /S2 (VETGIVE 4+ V"G 1Ap) dx dy, (38)

whereV = (3/9x, 3/0y) andG(x, y) is a 2x 2 symmetric positive definite matrix, often
referred to as a monitor matrix. The idea in adaptive mesh generation is to cBomse
concentrate mesh points §&, where the solution of the PDE is difficult to solve. Such an
approach has been used recently by &zal. [5] as the basis of anadaptive finite element
method. To apply these ideas to two-dimensional problems work is underway to initia
consider the monitor matrix

G=(1+ 1 >|,
Vis(X — %)% +1

wherel is the 2x 2 identity matrix andk, is the closest point on the phase boundary to the
pointx. Preliminary results in this direction are very encouraging.

7. CONCLUSIONS

In this paper we have developed a very simple adaptive moving mesh method for ph:
change problems in one dimension. The method uses a smoothed enthalpy-temperature
tionship and the grid is moved to equidistribute an analytically integrable monitor functic
The algorithm gives rise to smoothly clustered mesh trajectories which allow a very accul
prediction of the position of phase-change boundaries. We have used a novel semi-img
discretisation that gives rise to systems of nonlinear algebraic equations that can be sc
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efficiently using Newton’s method. We have also shown theoretically that a unique solut

of

these systems exists. Future work will include a detailed convergence analysis of

method and the extension of the moving mesh methodology to multidimensional proble
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